Invariant Feature and Kernel Distance Metric Learning Based Person Re-Identification
نویسندگان
چکیده
منابع مشابه
Person Re-Identification Using Kernel-Based Metric Learning Methods
Re-identification of individuals across camera networks with limited or no overlapping fields of view remains challenging in spite of significant research efforts. In this paper, we propose the use, and extensively evaluate the performance, of four alternatives for re-ID classification: regularized Pairwise Constrained Component Analysis, kernel Local Fisher Discriminant Analysis, Marginal Fish...
متن کاملHierarchical Invariant Feature Learning with Marginalization for Person Re-Identification
This paper addresses the problem of matching pedestrians across multiple camera views, known as person re-identification. Variations in lighting conditions, environment and pose changes across camera views make re-identification a challenging problem. Previous methods address these challenges by designing specific features or by learning a distance function. We propose a hierarchical feature le...
متن کاملMahalanobis Distance Learning for Person Re-identification
Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning...
متن کاملHuman Re-identification through Distance Metric Learning based on Jensen-Shannon Kernel
Human re-identification, i. e., human identification across cameras without an overlapping view, has important applications in video surveillance. The problem is very challenging due to color and illumination variations among cameras as well as the pose variations of people. Assuming that the color of human clothing does not change quickly, previous work relied on color histogram matching of cl...
متن کاملJoint Dimension Reduction and Metric Learning for Person Re-identification
Person re-identification is an important technique towards automatic search of a person’s presence in a surveillance video. Among various methods developed for person re-identification, the Mahalanobis metric learning approaches have attracted much attention due to their impressive performance. In practice, many previous papers have applied the Principle Component Analysis (PCA) for dimension r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Image and Signal Processing
سال: 2018
ISSN: 2325-6753,2325-6745
DOI: 10.12677/jisp.2018.72008